CO₂LOCK CORP.

Brucite-Rich Serpentinitized Peridotite (BRSP)
Hard Rock CO₂ Storage

Large-scale - Permanent - Affordable - Verifiable CO₂ Storage
OVERVIEW

CO₂ Lock:

• Is focused on commercializing CCS mineralization of Brucite-Rich Serpentinized Peridotite (BRSP) which is a far-superior to other host rocks such as Basalt, resulting in lower cost and faster offset creation

• Is advancing 3 different methods of CCS
 - Ex-situ water from BRSP
 - Ex-situ CO₂ injection into processed BRSP
 - In-situ injection directly into BRSP at depth

• Has acquired 6 years of significant lab and field work to confirm the CCS potential

• Is acquiring tenure for CCS project development

• Has a solid founding Team, which will be expanded in the near term to advance its commercialization strategy

• Focused on commercializing the mineralization process to achieve the key metric targets of volume, price, verification and permanency
CO₂ LOCK – COMMERCIALIZING CCS

CO₂ Lock created through the CO₂ storage discoveries by FPX Nickel Corp.

- FPX global search for mineral deposits to supply growing demand for “green” nickel used in batteries and electric vehicles
- World-class mineral deposit located in central British Columbia and 245 sq km of mineral tenure acquired to establish the Decar Nickel District
- FPX partnered with UBC and Natural Resources Canada to demonstrate CO₂ storage potential of Decar Nickel District
- 6 years and ongoing lab and field work
- Confirmed BRSP minerals at Decar, and other examined global locations, have very significant CO₂ storage capacity
- CO₂ Lock created to focus on commercialize CCS using BRSP
THE BRUCITE-RICH SERPENTINIZED PERIDOTITE ADVANTAGE

Faster CO₂ reaction rate and larger volume than other options means lower cost and faster offsets.

CO₂ LOCK stores CO₂ in hard rock called serpentinized peridotites – the brucite-rich form is a superior host with significantly faster and larger storage potential than basalts.

BRSP

- Originates in Earth’s Mantle, in place by continental movement
- **HIGH** Rate of Reaction with CO₂
- **HIGH** Mineralization potential

BASALTS

- Originates in Earth’s Mantle, in place by volcanic and intrusive activity
- **LOW** Rate of Reaction with CO₂
- **LOW** Mineralization potential
HOW WE PERMANENTLY STORE CO₂

Order of commercialization potential using BRSP

BRSP Rock → Ex-Situ Water Extraction + Ex-situ Mineralization + In-Situ CO₂ Injection + Chemistry & Engineering

CO₂ LOCK CORP.
CO2 LOCK HAS PROVEN SCIENCE

- Research at UBC and NRCan using FPX Nickel mineral samples has confirmed carbon storage capabilities of BRSP
- Geological research at UBC confirms significant presence of SP in British Columbia
- Demonstration projects using similar but different materials confirms technology
- CO₂ Lock is focused on commercializing the mineralization process to achieve the key metric targets of volume, price, verification and permanency

“...ex-situ carbon mineralization has an estimated sequestration capacity of 56 Gt CO₂; this represents more than 800 years of GHG emissions in B.C. at current rates.”¹

CO\textsubscript{2} Lock focus is on project development

- Focus on BRSP
- Acquire Tenure
- Develop CO\textsubscript{2} Storage Projects
- Store and Verify CO\textsubscript{2}
- Monetize Mineralized CO\textsubscript{2}
- License IP
CO₂ LOCK HAS 4 WORKSTREAMS

- EXPLORATION & TENURE ACQUISITION
- EX-SITU WATER EXTRACTION
- EX-SITU MINERAL EXTRACTION
- IN-SITU CO₂ INJECTION
EXPLORATION AND TENURE ACQUISITION

CO2 Lock is acquiring additional tenure to support commercialization

- Using data provided by FPX Nickel and internal geological expertise, CO2 Lock is acquiring tenures in areas of BC with BRSP occurrences for CCS project development
- Focus for tenure acquisition in areas that are near major industrial centers and infrastructure access

- Global tenures acquisition plan will focus on occurrences and potential for CCS project development
EX-SITU MINERALIZED CO₂

Alkaline water is extracted from BRSP

CO₂ stream is injected into the alkaline water to mineralize the CO₂

Resulting material repurposed in agriculture, forestry, and other sectors

Development Sequence
- Tenure acquisition
- Regulatory approvals
- Acquire CO₂ supply
- Drill water injection and recovery wells
- Compression and pumping
- CO₂ storage verification
EX-SITU PROCESSED MATERIALS
A new way to using mining technology to store CO₂

Serpentinized Peridotite rock is extracted and processed

Processed rock is either:
- Regularly churned and watered to accelerate and maximize reaction with atmospheric CO₂, or
- A CO₂ stream is injected into the materials to accelerate and maximize mineralization.

Resulting material will permanently mineralize CO₂

Development Sequence
- Tenure acquisition
- Complete regulatory approvals
- Mineral extraction and processing
- Material preparation
- Acquire CO₂ supply
- Compression and pumping
- CO₂ storage verification
IN-SITU STORAGE
Reimaging mining and oil and gas technologies to permanently store and verify CO₂

Development Sequence
• Tenure acquisition
• Regulatory approvals
• Acquire CO₂ supply
• Drill water injection and recovery wells
• Compression and pumping
• CO₂ storage verification

TEAM

Science, business and resource sector leaders with track records of success

DR. PETER M. D. BRADSHAW, P.ENG.
FOUNDING DIRECTOR

Chairman, FPX Nickel Corp.
Geologist with 45 years international mineral exploration and R&D experience in over 30 countries with Barringer Research, Placer Dome and Orvana Minerals
Founder or co-founder of several successful companies which are now public
Member, Canadian Mining Hall of Fame
Founder of BRIMM (Bradshaw Research Initiative for Minerals and Mining) at UBC

MARTIN TURENNE, CPA, CA
FOUNDING DIRECTOR

President, CEO and Director of FPX Nickel Corp.
Senior executive with over 15 years’ experience in the commodities industry
Extensive leadership experience in strategic management, fundraising, economic analysis, financial reporting, regulatory compliance and corporate tax

DAVID MOLINSKI, BA, MNRM
FOUNDING DIRECTOR & CEO

Principal, OnPoint Consulting
25-year career in energy sector
Extensive career in government including Assistant Deputy Minister, Oil and Gas Division, BC Ministry of Energy, Mines and Low-Carbon Innovation and Led Policy and External Affairs Team with Chevron Canada
PATH TO COMMERCIALIZATION

Phase 1 – Start Up
- Build Executive and Scientific Team
- Advance R&D Program
- Acquire non-dilutive funding
- Acquire tenure and conduct field exploration

Phase 2 – Acquire properties; Large-Scale Demonstration Project; Global Expansion Planning
- Develop and execute large-scale demonstration projects (ex-situ and in-situ)
- Plan initial Commercial Project
- Initiate global evaluation for additional projects – select portfolio of project options

Phase 3 – Operation and Global Project Short List
- Commence initial Commercial Project
- Identify and create prioritized list of global projects to advance

Phase 4 – Global Expansion, Create Portfolio of Projects
- Focus on global expansion
- Create portfolio of global projects
- Produce project development plans and economics for highest priority global projects

2022
$1.5M Investment Round

2024
$25-50M Investment Round

2026

2028

2030

2032

$1.5M
$25-50M

Investment Round

Investment Round

CO₂ LOCK CORP.
CONTACT

MARTIN TURENNE, PRESIDENT AND CEO, FPX NICKEL
604.681.8600, ceo@fpxinickel.com

DAVID MOLINSKI, FOUNDING CEO, CO₂ LOCK CORP.
250.588.6056, dmolinski@co2lockcorp.com

PETER BRADSHAW, CHAIR, FPX NICKEL
604.220.3381, pbradshawresearch@gmail.com